If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-10x-20=0
a = 15; b = -10; c = -20;
Δ = b2-4ac
Δ = -102-4·15·(-20)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{13}}{2*15}=\frac{10-10\sqrt{13}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{13}}{2*15}=\frac{10+10\sqrt{13}}{30} $
| 29$+n=41$ | | 3(2x-5)=25+4x | | 100-x=3,2x | | 8x+6-3x=18+x | | 6(4+3x)=96 | | 5(p+3)=60 | | 2b2+-24=0 | | (4x^-2)-(3x^-1)-1=0 | | n/3=3+4 | | 5(y+3)-2y=51 | | 5(z+9)(-z+7)=0 | | 3x(2x+10)=90 | | -6(w+2)-w-7=-7(w+4)+9 | | 3+p=8* | | 2x-5/7=5x/2 | | 2x=2.5=8.5 | | 56y+1=−12y+34 | | -4x-3+6=5 | | 23(2x+30)=205 | | 6(x+20)=100 | | -6x+18=7=(4x+9) | | 16-x=5x | | +4y=-10 | | 23+(2x+30)=205 | | y=1/2(2)+4 | | f=180°–50°–° | | 8(-7-8x)-7x=-198 | | x*0.5^(60/1.5)=1 | | (W-x4/9)(-2/3)=-4/5 | | 76y-72=y-(-65) | | X+8+5x=180 | | 24+21-2y=21 |